简介
C 语言是一种通用的高级语言,最初是由丹尼斯·里奇在贝尔实验室为开发 UNIX 操作系统而设计的。C 语言最开始是于 1972 年在 DEC PDP-11 计算机上被首次实现。
在 1978 年,布莱恩·柯林汉(Brian Kernighan)和丹尼斯·里奇(Dennis Ritchie)制作了 C 的第一个公开可用的描述,现在被称为 K&R 标准。
- 易于学习。
- 结构化语言。
- 它产生高效率的程序。
- 它可以处理底层的活动。
- 它可以在多种计算机平台上编译。
程序结构
C 程序主要包括以下部分:
1、预处理器指令
2、函数
3、变量
4、语句 & 表达式
5、注释
让我们看一段简单的代码,可以输出单词 “Hello World”:1
2
3
4
5
6
7
8
9#include <stdio.h>
int main()
{
/* 我的第一个 C 程序 */
printf("Hello, World! \n");
return 0;
}
编译 & 执行 C 程序:1
2$ gcc hello.c
$ ./a.out
a.out 为可执行文件,如果是多个 c 代码的源码文件,编译方法如下:1
2$ gcc test1.c test2.c -o main.out
$ ./main.out
基本语法
C 的令牌(Tokens)
C 程序由各种令牌组成,令牌可以是关键字、标识符、常量、字符串值,或者是一个符号。例如,下面的 C 语句包括五个令牌:1
printf("Hello, World! \n");
这五个令牌分别是:1
2
3
4
5printf
(
"Hello, World! \n"
)
;
标识符
C 标识符是用来标识变量、函数,或任何其他用户自定义项目的名称。一个标识符以字母 A-Z 或 a-z 或下划线 _ 开始,后跟零个或多个字母、下划线和数字(0-9)。
C 标识符内不允许出现标点字符,比如 @、$ 和 %。C 是区分大小写的编程语言。因此,在 C 中,Manpower 和 manpower 是两个不同的标识符。下面列出几个有效的标识符:
mohd zara abc move_name a_123
myname50 _temp j a23b9 retVal
关键字
下表列出了 C 中的保留字。这些保留字不能作为常量名、变量名或其他标识符名称。
关键字 | 说明 |
---|---|
auto | 声明自动变量 |
break | 跳出当前循环 |
case | 开关语句分支 |
char | 声明字符型变量或函数返回值类型 |
const | 声明只读变量 |
continue | 结束当前循环,开始下一轮循环 |
default | 开关语句中的”其它”分支 |
do | 循环语句的循环体 |
double | 声明双精度浮点型变量或函数返回值类型 |
else | 条件语句否定分支(与 if 连用) |
enum | 声明枚举类型 |
extern | 声明变量或函数是在其它文件或本文件的其他位置定义 |
float | 声明浮点型变量或函数返回值类型 |
for | 一种循环语句 |
goto | 无条件跳转语句 |
if | 条件语句 |
int | 声明整型变量或函数 |
long | 声明长整型变量或函数返回值类型 |
register | 声明寄存器变量 |
return | 子程序返回语句(可以带参数,也可不带参数) |
short | 声明短整型变量或函数 |
signed | 声明有符号类型变量或函数 |
sizeof | 计算数据类型或变量长度(即所占字节数) |
static | 声明静态变量 |
struct | 声明结构体类型 |
switch | 用于开关语句 |
typedef | 用以给数据类型取别名 |
unsigned | 声明无符号类型变量或函数 |
union | 声明共用体类型 |
void | 声明函数无返回值或无参数,声明无类型指针 |
volatile | 说明变量在程序执行中可被隐含地改变 |
while | 循环语句的循环条件 |
C99 新增关键字:
_Bool _Complex _Imaginary inline restrict
C11 新增关键字:
_Alignas _Alignof _Atomic _Generic _Noreturn
_Static_assert _Thread_local
数据类型
在 C 语言中,数据类型指的是用于声明不同类型的变量或函数的一个广泛的系统。变量的类型决定了变量存储占用的空间,以及如何解释存储的位模式。
C 中的类型可分为以下几种:
序号 | 类型与描述 |
---|---|
1 | 基本类型:它们是算术类型,包括两种类型:整数类型和浮点类型。 |
2 | 枚举类型:它们也是算术类型,被用来定义在程序中只能赋予其一定的离散整数值的变量。 |
3 | void 类型:类型说明符 void 表明没有可用的值。 |
4 | 派生类型:它们包括:指针类型、数组类型、结构类型、共用体类型和函数类型。 |
数组类型和结构类型统称为聚合类型。函数的类型指的是函数返回值的类型。
整数类型
下表列出了关于标准整数类型的存储大小和值范围的细节:
类型 | 存储大小 | 值范围 |
---|---|---|
char | 1 字节 | -128 到 127 或 0 到 255 |
unsigned char | 1 字节 | 0 到 255 |
signed char | 1 字节 | -128 到 127 |
int | 2 或 4 字节 | -32,768 到 32,767 或 -2,147,483,648 到 2,147,483,647 |
unsigned int | 2 或 4 字节 | 0 到 65,535 或 0 到 4,294,967,295 |
short | 2 字节 | -32,768 到 32,767 |
unsigned short | 2 字节 | 0 到 65,535 |
long | 4 字节 | -2,147,483,648 到 2,147,483,647 |
unsigned long | 4 字节 | 0 到 4,294,967,295 |
注意,各种类型的存储大小与系统位数有关,但目前通用的以64位系统为主。为了得到某个类型或某个变量在特定平台上的准确大小,您可以使用 sizeof 运算符。表达式 sizeof(type) 得到对象或类型的存储字节大小。
浮点类型
下表列出了关于标准浮点类型的存储大小、值范围和精度的细节:
类型 | 存储大小 | 值范围 | 精度 |
---|---|---|---|
float | 4 字节 | 1.2E-38 到 3.4E+38 | 6 位小数 |
double | 8 字节 | 2.3E-308 到 1.7E+308 | 15 位小数 |
long double | 16 字节 | 3.4E-4932 到 1.1E+4932 | 19 位小数 |
void 类型
void 类型指定没有可用的值。它通常用于以下三种情况下:
序号 | 类型与描述 |
---|---|
1 | 函数返回为空:C 中有各种函数都不返回值,或者您可以说它们返回空。不返回值的函数的返回类型为空。例如 void exit (int status); |
2 | 函数参数为空:C 中有各种函数不接受任何参数。不带参数的函数可以接受一个 void。例如 int rand(void); |
3 | 指针指向 void:类型为 void * 的指针代表对象的地址,而不是类型。例如,内存分配函数 void *malloc( size_t size ); 返回指向 void 的指针,可以转换为任何数据类型。 |
变量
变量其实只不过是程序可操作的存储区的名称。C 中每个变量都有特定的类型,类型决定了变量存储的大小和布局,该范围内的值都可以存储在内存中,运算符可应用于变量上。
变量定义
变量定义就是告诉编译器在何处创建变量的存储,以及如何创建变量的存储。变量定义指定一个数据类型,并包含了该类型的一个或多个变量的列表,如下所示:
type variable_list;
不带初始化的定义:带有静态存储持续时间的变量会被隐式初始化为 NULL(所有字节的值都是 0),其他所有变量的初始值是未定义的。
变量声明
变量声明向编译器保证变量以指定的类型和名称存在,这样编译器在不需要知道变量完整细节的情况下也能继续进一步的编译。变量声明只在编译时有它的意义,在程序连接时编译器需要实际的变量声明。
变量的声明有两种情况:
1、一种是需要建立存储空间的。例如:int a 在声明的时候就已经建立了存储空间。
2、另一种是不需要建立存储空间的,通过使用extern关键字声明变量名而不定义它。 例如:extern int a 其中变量 a 可以在别的文件中定义的。
除非有extern关键字,否则都是变量的定义:1
2extern int i; //声明,不是定义
int i; //声明,也是定义
如果需要在一个源文件中引用另外一个源文件中定义的变量,我们只需在引用的文件中将变量加上 extern 关键字的声明即可。
常量
整数常量
整数常量可以是十进制、八进制或十六进制的常量。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。
整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。后缀可以是大写,也可以是小写,U 和 L 的顺序任意。
以下是各种类型的整数常量的实例:
85 /* 十进制 */
0213 /* 八进制 */
0x4b /* 十六进制 */
30 /* 整数 */
30u /* 无符号整数 */
30l /* 长整数 */
30ul /* 无符号长整数 */
浮点常量
浮点常量由整数部分、小数点、小数部分和指数部分组成。您可以使用小数形式或者指数形式来表示浮点常量。
当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。
下面列举几个浮点常量的实例:
3.14159 /* 合法的 */
314159E-5L /* 合法的 */
510E /* 非法的:不完整的指数 */
210f /* 非法的:没有小数或指数 */
.e55 /* 非法的:缺少整数或分数 */
字符常量/字符串常量
字符常量可以是一个普通的字符(例如 ‘x’)、一个转义序列(例如 ‘\t’),或一个通用的字符(例如 ‘\u02C0’)。
在 C 中,有一些特定的字符,当它们前面有反斜杠时,它们就具有特殊的含义,被用来表示如换行符(\n)或制表符(\t)等。
字符串字面值或常量是括在双引号 “” 中的。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。您可以使用空格做分隔符,把一个很长的字符串常量进行分行。
定义常量
在 C 中,有两种简单的定义常量的方式:
1、使用 #define 预处理器。
2、使用 const 关键字。
#define 预处理器
下面是使用 #define 预处理器定义常量的形式:
#define identifier value
const 关键字
您可以使用 const 前缀声明指定类型的常量,如下所示:
const type variable = value;
存储类
存储类定义 C 程序中变量/函数的范围(可见性)和生命周期。这些说明符放置在它们所修饰的类型之前。下面列出 C 程序中可用的存储类:
- auto
- register
- static
- extern
auto 存储类
auto 存储类是所有局部变量默认的存储类。
{
int mount;
auto int month;
}
上面的实例定义了两个带有相同存储类的变量,auto 只能用在函数内,即 auto 只能修饰局部变量。
register 存储类
register 存储类用于定义存储在寄存器中而不是 RAM 中的局部变量。这意味着变量的最大尺寸等于寄存器的大小(通常是一个词),且不能对它应用一元的 ‘&’ 运算符(因为它没有内存位置)。
{
register int miles;
}
寄存器只用于需要快速访问的变量,比如计数器。还应注意的是,定义 ‘register’ 并不意味着变量将被存储在寄存器中,它意味着变量可能存储在寄存器中,这取决于硬件和实现的限制。
static 存储类
static 存储类指示编译器在程序的生命周期内保持局部变量的存在,而不需要在每次它进入和离开作用域时进行创建和销毁。因此,使用 static 修饰局部变量可以在函数调用之间保持局部变量的值。
static 修饰符也可以应用于全局变量。当 static 修饰全局变量时,会使变量的作用域限制在声明它的文件内。全局声明的一个 static 变量或方法可以被任何函数或方法调用,只要这些方法出现在跟 static 变量或方法同一个文件中。
以下实例演示了 static 修饰全局变量和局部变量的应用:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36#include <stdio.h>
/* 函数声明 */
void func1(void);
static int count=10; /* 全局变量 - static 是默认的 */
int main()
{
while (count--) {
func1();
}
return 0;
}
void func1(void)
{
/* 'thingy' 是 'func1' 的局部变量 - 只初始化一次
* 每次调用函数 'func1' 'thingy' 值不会被重置。
*/
static int thingy=5;
thingy++;
printf(" thingy 为 %d , count 为 %d\n", thingy, count);
}
结果:
thingy 为 6 , count 为 9
thingy 为 7 , count 为 8
thingy 为 8 , count 为 7
thingy 为 9 , count 为 6
thingy 为 10 , count 为 5
thingy 为 11 , count 为 4
thingy 为 12 , count 为 3
thingy 为 13 , count 为 2
thingy 为 14 , count 为 1
thingy 为 15 , count 为 0
extern 存储类
extern 存储类用于提供一个全局变量的引用,全局变量对所有的程序文件都是可见的。当您使用 extern 时,对于无法初始化的变量,会把变量名指向一个之前定义过的存储位置。
当您有多个文件且定义了一个可以在其他文件中使用的全局变量或函数时,可以在其他文件中使用 extern 来得到已定义的变量或函数的引用。可以这么理解,extern 是用来在另一个文件中声明一个全局变量或函数。
extern 修饰符通常用于当有两个或多个文件共享相同的全局变量或函数的时候,如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27//第一个文件:main.c
#include <stdio.h>
int count ;
extern void write_extern();
int main()
{
count = 5;
write_extern();
}
//第二个文件:support.c
#include <stdio.h>
extern int count;
void write_extern(void)
{
printf("count is %d\n", count);
}
//在这里,第二个文件中的 extern 关键字用于声明已经在第一个文件 main.c 中定义的 count。现在 ,编译这两个文件,如下所示:
$ gcc main.c support.c
//这会产生 a.out 可执行程序,当程序被执行时,它会产生下列结果:
count is 5
运算符
运算符是一种告诉编译器执行特定的数学或逻辑操作的符号。C 语言内置了丰富的运算符,并提供了以下类型的运算符:
- 算术运算符
- 关系运算符
- 逻辑运算符
- 位运算符
- 赋值运算符
- 杂项运算符
判断语句
if…else 语句
switch 语句
? : 运算符(三元运算符)
循环语句
while 循环
do…while 循环
for 循环
控制语句包括:break 语句、continue 语句、goto 语句
函数
C 语言中的函数定义的一般形式如下:1
2
3
4return_type function_name( parameter list )
{
body of the function
}
函数声明
函数声明会告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。
函数声明包括以下几个部分:
return_type function_name( parameter list );
针对上面定义的函数 max(),以下是函数声明:
int max(int num1, int num2);
在函数声明中,参数的名称并不重要,只有参数的类型是必需的,因此下面也是有效的声明:
int max(int, int);
当您在一个源文件中定义函数且在另一个文件中调用函数时,函数声明是必需的。在这种情况下,您应该在调用函数的文件顶部声明函数。
函数参数
如果函数要使用参数,则必须声明接受参数值的变量,这些变量称为函数的形式参数。形式参数就像函数内的其他局部变量,在进入函数时被创建,退出函数时被销毁。
当调用函数时,有两种向函数传递参数的方式:
调用类型 | 描述 |
---|---|
传值调用 | 该方法把参数的实际值复制给函数的形式参数。在这种情况下,修改函数内的形式参数不会影响实际参数。 |
引用调用 | 通过指针传递方式,形参为指向实参地址的指针,当对形参的指向操作时,就相当于对实参本身进行的操作。 |
默认情况下,C 使用传值调用来传递参数。一般来说,这意味着函数内的代码不能改变用于调用函数的实际参数。
作用域
全局变量与局部变量在内存中的区别:
1、全局变量保存在内存的全局存储区中,占用静态的存储单元;
2、局部变量保存在栈中,只有在所在函数被调用时才动态地为变量分配存储单元。
当局部变量被定义时,系统不会对其初始化,您必须自行对其初始化。定义全局变量时,系统会自动对其初始化。
正确地初始化变量是一个良好的编程习惯,否则有时候程序可能会产生意想不到的结果,因为未初始化的变量会导致一些在内存位置中已经可用的垃圾值。
数组
C 语言支持数组数据结构,它可以存储一个固定大小的相同类型元素的顺序集合。数组是用来存储一系列数据,但它往往被认为是一系列相同类型的变量。所有的数组都是由连续的内存位置组成。最低的地址对应第一个元素,最高的地址对应最后一个元素。
在 C 中要声明一个数组,需要指定元素的类型和元素的数量,如下所示:
type arrayName [ arraySize ];
enum(枚举)
在C 语言中,枚举类型是被当做 int 或者 unsigned int 类型来处理的。
枚举语法定义格式为:
enum 枚举名 {枚举元素1,枚举元素2,……};
使用枚举的方式:1
2
3
4enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
注意:第一个枚举成员的默认值为整型的 0,后续枚举成员的值在前一个成员上加 1。我们在这个实例中把第一个枚举成员的值定义为 1,第二个就为 2,以此类推。
可以在定义枚举类型时改变枚举元素的值:
enum season {spring, summer=3, autumn, winter};
没有指定值的枚举元素,其值为前一元素加 1。也就说 spring 的值为 0,summer 的值为 3,autumn 的值为 4,winter 的值为 5
枚举变量的定义
前面我们只是声明了枚举类型,接下来我们看看如何定义枚举变量。
我们可以通过以下三种方式来定义枚举变量
1、先定义枚举类型,再定义枚举变量1
2
3
4
5enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
};
enum DAY day;
2、定义枚举类型的同时定义枚举变量1
2
3
4enum DAY
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
3、省略枚举名称,直接定义枚举变量1
2
3
4enum
{
MON=1, TUE, WED, THU, FRI, SAT, SUN
} day;
遍历
按照 C 语言规范是没有办法遍历枚举类型的。不过在一些特殊的情况下,枚举类型必须连续是可以实现有条件的遍历。
也可以将整数转换为枚举。
指针
每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址。
请看下面的实例,它将输出定义的变量地址:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16#include <stdio.h>
int main ()
{
int var1;
char var2[10];
printf("var1 变量的地址: %p\n", &var1 );
printf("var2 变量的地址: %p\n", &var2 );
return 0;
}
结果:
var1 变量的地址: 0x7fff5cc109d4
var2 变量的地址: 0x7fff5cc109de
什么是指针?
指针是一个变量,其值为另一个变量的地址,即内存位置的直接地址。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:
type *var-name;
所有实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,对应指针的值的类型都是一样的,都是一个代表内存地址的长的十六进制数。
不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。
如何使用指针?
使用指针时会频繁进行以下几个操作:定义一个指针变量、把变量地址赋值给指针、访问指针变量中可用地址的值。这些是通过使用一元运算符 * 来返回位于操作数所指定地址的变量的值。下面的实例涉及到了这些操作:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24#include <stdio.h>
int main ()
{
int var = 20; /* 实际变量的声明 */
int *ip; /* 指针变量的声明 */
ip = &var; /* 在指针变量中存储 var 的地址 */
printf("Address of var variable: %p\n", &var );
/* 在指针变量中存储的地址 */
printf("Address stored in ip variable: %p\n", ip );
/* 使用指针访问值 */
printf("Value of *ip variable: %d\n", *ip );
return 0;
}
结果:
Address of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c
Value of *ip variable: 20
C 中的 NULL 指针
在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为空指针。
NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:1
2
3
4
5
6
7
8
9
10
11
12
13#include <stdio.h>
int main ()
{
int *ptr = NULL;
printf("ptr 的地址是 %p\n", ptr );
return 0;
}
结果:
ptr 的地址是 0x0
在大多数的操作系统上,程序不允许访问地址为 0 的内存,因为该内存是操作系统保留的。然而,内存地址 0 有特别重要的意义,它表明该指针不指向一个可访问的内存位置。但按照惯例,如果指针包含空值(零值),则假定它不指向任何东西。
如需检查一个空指针,您可以使用 if 语句,如下所示:
if(ptr) /* 如果 p 非空,则完成 */
if(!ptr) /* 如果 p 为空,则完成 */
指向指针的指针
指向指针的指针是一种多级间接寻址的形式,或者说是一个指针链。通常,一个指针包含一个变量的地址。当我们定义一个指向指针的指针时,第一个指针包含了第二个指针的地址,第二个指针指向包含实际值的位置。
一个指向指针的指针变量必须如下声明,即在变量名前放置两个星号。例如,下面声明了一个指向 int 类型指针的指针:
int **var;
函数指针与回调函数
函数指针是指向函数的指针变量。
通常我们说的指针变量是指向一个整型、字符型或数组等变量,而函数指针是指向函数。函数指针可以像一般函数一样,用于调用函数、传递参数。
函数指针变量的声明:
typedef int (*fun_ptr)(int,int); // 声明一个指向同样参数、返回值的函数指针类型
以下实例声明了函数指针变量 p,指向函数 max:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27#include <stdio.h>
int max(int x, int y)
{
return x > y ? x : y;
}
int main(void)
{
/* p 是函数指针 */
int (* p)(int, int) = & max; // &可以省略
int a, b, c, d;
printf("请输入三个数字:");
scanf("%d %d %d", & a, & b, & c);
/* 与直接调用函数等价,d = max(max(a, b), c) */
d = p(p(a, b), c);
printf("最大的数字是: %d\n", d);
return 0;
}
结果如下:
请输入三个数字:1 2 3
最大的数字是: 3
回调函数
函数指针作为某个函数的参数,回调函数就是一个通过函数指针调用的函数。
简单讲:回调函数是由别人的函数执行时调用你实现的函数。
实例中 populate_array 函数定义了三个参数,其中第三个参数是函数的指针,通过该函数来设置数组的值:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29#include <stdlib.h>
#include <stdio.h>
// 回调函数
void populate_array(int *array, size_t arraySize, int (*getNextValue)(void))
{
for (size_t i=0; i<arraySize; i++)
array[i] = getNextValue();
}
// 获取随机值
int getNextRandomValue(void)
{
return rand();
}
int main(void)
{
int myarray[10];
populate_array(myarray, 10, getNextRandomValue);
for(int i = 0; i < 10; i++) {
printf("%d ", myarray[i]);
}
printf("\n");
return 0;
}
结果如下:
16807 282475249 1622650073 984943658 1144108930 470211272 101027544 1457850878 1458777923 2007237709
C 字符串
在 C 语言中,字符串实际上是使用 null 字符 ‘\0’ 终止的一维字符数组。因此,一个以 null 结尾的字符串,包含了组成字符串的字符。
下面的声明和初始化创建了一个 “Hello” 字符串。由于在数组的末尾存储了空字符,所以字符数组的大小比单词 “Hello” 的字符数多一个。
char greeting[6] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’};
依据数组初始化规则,您可以把上面的语句写成以下语句:
char greeting[] = “Hello”;
其实,您不需要把 null 字符放在字符串常量的末尾。C 编译器会在初始化数组时,自动把 ‘\0’ 放在字符串的末尾。
C 中有大量操作字符串的函数:
函数 | 目的 |
---|---|
strcpy(s1, s2) | 复制字符串 s2 到字符串 s1。 |
strcat(s1, s2) | 连接字符串 s2 到字符串 s1 的末尾。 |
strlen(s1) | 返回字符串 s1 的长度。 |
strcmp(s1, s2) | 如果 s1 和 s2 是相同的,则返回 0;如果 s1 |
strchr(s1, ch) | 返回一个指针,指向字符串 s1 中字符 ch 的第一次出现的位置。 |
strstr(s1, s2) | 返回一个指针,指向字符串 s1 中字符串 s2 的第一次出现的位置。 |
结构体
结构是 C 编程中一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。
为了定义结构,您必须使用 struct 语句。struct 语句定义了一个包含多个成员的新的数据类型,struct 语句的格式如下:1
2
3
4
5
6struct tag {
member-list
member-list
member-list
...
} variable-list ;
tag 是结构体标签。
member-list 是标准的变量定义,比如 int i; 或者 float f,或者其他有效的变量定义。
variable-list 结构变量,定义在结构的末尾,最后一个分号之前,您可以指定一个或多个结构变量。下面是声明 Book 结构的方式:1
2
3
4
5
6
7struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} book;
在一般情况下,tag、member-list、variable-list 这 3 部分至少要出现 2 个。以下为实例:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30//此声明声明了拥有3个成员的结构体,分别为整型的a,字符型的b和双精度的c
//同时又声明了结构体变量s1
//这个结构体并没有标明其标签
struct
{
int a;
char b;
double c;
} s1;
//此声明声明了拥有3个成员的结构体,分别为整型的a,字符型的b和双精度的c
//结构体的标签被命名为SIMPLE,没有声明变量
struct SIMPLE
{
int a;
char b;
double c;
};
//用SIMPLE标签的结构体,另外声明了变量t1、t2、t3
struct SIMPLE t1, t2[20], *t3;
//也可以用typedef创建新类型
typedef struct
{
int a;
char b;
double c;
} Simple2;
//现在可以用Simple2作为类型声明新的结构体变量
Simple2 u1, u2[20], *u3;
在上面的声明中,第一个和第二声明被编译器当作两个完全不同的类型,即使他们的成员列表是一样的,如果令 t3=&s1,则是非法的。
结构体的成员可以包含其他结构体,也可以包含指向自己结构体类型的指针,而通常这种指针的应用是为了实现一些更高级的数据结构如链表和树等。1
2
3
4
5
6
7
8
9
10
11
12
13//此结构体的声明包含了其他的结构体
struct COMPLEX
{
char string[100];
struct SIMPLE a;
};
//此结构体的声明包含了指向自己类型的指针
struct NODE
{
char string[100];
struct NODE *next_node;
};
如果两个结构体互相包含,则需要对其中一个结构体进行不完整声明,如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15struct B; //对结构体B进行不完整声明
//结构体A中包含指向结构体B的指针
struct A
{
struct B *partner;
//other members;
};
//结构体B中包含指向结构体A的指针,在A声明完后,B也随之进行声明
struct B
{
struct A *partner;
//other members;
};
结构体变量的初始化
和其它类型变量一样,对结构体变量可以在定义时指定初始值。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include <stdio.h>
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} book = {"C 语言", "RUNOOB", "编程语言", 123456};
int main()
{
printf("title : %s\nauthor: %s\nsubject: %s\nbook_id: %d\n", book.title, book.author, book.subject, book.book_id);
}
执行输出结果为:
title : C 语言
author: RUNOOB
subject: 编程语言
book_id: 123456
指向结构的指针
您可以定义指向结构的指针,方式与定义指向其他类型变量的指针相似,如下所示:
struct Books *struct_pointer;
现在,您可以在上述定义的指针变量中存储结构变量的地址。为了查找结构变量的地址,请把 & 运算符放在结构名称的前面,如下所示:
struct_pointer = &Book1;
为了使用指向该结构的指针访问结构的成员,您必须使用 -> 运算符,如下所示:
struct_pointer->title;
实例如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45#include <stdio.h>
#include <string.h>
struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
};
/* 函数声明 */
void printBook( struct Books *book );
int main( )
{
struct Books Book1; /* 声明 Book1,类型为 Books */
struct Books Book2; /* 声明 Book2,类型为 Books */
/* Book1 详述 */
strcpy( Book1.title, "C Programming");
strcpy( Book1.author, "Nuha Ali");
strcpy( Book1.subject, "C Programming Tutorial");
Book1.book_id = 6495407;
/* Book2 详述 */
strcpy( Book2.title, "Telecom Billing");
strcpy( Book2.author, "Zara Ali");
strcpy( Book2.subject, "Telecom Billing Tutorial");
Book2.book_id = 6495700;
/* 通过传 Book1 的地址来输出 Book1 信息 */
printBook( &Book1 );
/* 通过传 Book2 的地址来输出 Book2 信息 */
printBook( &Book2 );
return 0;
}
void printBook( struct Books *book )
{
printf( "Book title : %s\n", book->title);
printf( "Book author : %s\n", book->author);
printf( "Book subject : %s\n", book->subject);
printf( "Book book_id : %d\n", book->book_id);
}
位域
有些信息在存储时,并不需要占用一个完整的字节,而只需占几个或一个二进制位。例如在存放一个开关量时,只有 0 和 1 两种状态,用 1 位二进位即可。为了节省存储空间,并使处理简便,C 语言又提供了一种数据结构,称为”位域”或”位段”。
所谓”位域”是把一个字节中的二进位划分为几个不同的区域,并说明每个区域的位数。每个域有一个域名,允许在程序中按域名进行操作。这样就可以把几个不同的对象用一个字节的二进制位域来表示。
典型的实例:
1、用 1 位二进位存放一个开关量时,只有 0 和 1 两种状态。
2、读取外部文件格式——可以读取非标准的文件格式。例如:9 位的整数。
位域定义与结构定义相仿,其形式为:1
2
3
4struct
{
type [member_name] : width ;
};
type:只能为 int(整型),unsigned int(无符号整型),signed int(有符号整型) 三种类型,决定了如何解释位域的值。
member_name:位域的名称。
width:位域中位的数量。宽度必须小于或等于指定类型的位宽度。
例如:1
2
3
4
5
6//data 为 bs 变量,共占两个字节。其中位域 a 占 8 位,位域 b 占 2 位,位域 c 占 6 位。
struct bs{
int a:8;
int b:2;
int c:6;
}data;
位域说明
1、一个位域存储在同一个字节中,如一个字节所剩空间不够存放另一位域时,则会从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:1
2
3
4
5
6
7//在这个位域定义中,a 占第一字节的 4 位,后 4 位填 0 表示不使用,b 从第二字节开始,占用 4 位,c 占用 4 位。
struct bs{
unsigned a:4;
unsigned :4; /* 空域 */
unsigned b:4; /* 从下一单元开始存放 */
unsigned c:4
}
2、由于位域不允许跨两个字节,因此位域的长度不能大于一个字节的长度,也就是说不能超过8位二进位。如果最大长度大于计算机的整数字长,一些编译器可能会允许域的内存重叠,另外一些编译器可能会把大于一个域的部分存储在下一个字中。
3、位域可以是无名位域,这时它只用来作填充或调整位置。无名的位域是不能使用的。例如:1
2
3
4
5
6struct k{
int a:1;
int :2; /* 该 2 位不能使用 */
int b:3;
int c:2;
};
从以上分析可以看出,位域在本质上就是一种结构类型,不过其成员是按二进位分配的。
位域的使用
位域的使用和结构成员的使用相同,其一般形式为:
位域变量名.位域名
位域变量名->位域名
位域允许用各种格式输出。
共用体
共用体是一种特殊的数据类型,允许您在相同的内存位置存储不同的数据类型,但任何时候只能有一个成员带有值。共用体提供了一种使用相同的内存位置的有效方式。
共用体占用的内存应足够存储共用体中最大的成员。
为了定义共用体,您必须使用 union 语句,方式与定义结构类似。union 语句定义了一个新的数据类型,带有多个成员。union 语句的格式如下:1
2
3
4
5
6
7union [union tag]
{
member definition;
member definition;
...
member definition;
} [one or more union variables];
union tag 是可选的,每个 member definition 是标准的变量定义,比如 int i; 或者 float f; 或者其他有效的变量定义。在共用体定义的末尾,最后一个分号之前,您可以指定一个或多个共用体变量,这是可选的。
实例:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29#include <stdio.h>
#include <string.h>
union Data
{
int i;
float f;
char str[20];
};
int main( )
{
union Data data;
data.i = 10;
data.f = 220.5;
strcpy( data.str, "C Programming");
printf( "data.i : %d\n", data.i);
printf( "data.f : %f\n", data.f);
printf( "data.str : %s\n", data.str);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
data.i : 1917853763
data.f : 4122360580327794860452759994368.000000
data.str : C Programming
在这里,我们可以看到共用体的 i 和 f 成员的值有损坏,因为最后赋给变量的值占用了内存位置,这也是 str 成员能够完好输出的原因。现在让我们再来看一个相同的实例,这次我们在同一时间只使用一个变量,这也演示了使用共用体的主要目的:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30#include <stdio.h>
#include <string.h>
union Data
{
int i;
float f;
char str[20];
};
int main( )
{
union Data data;
data.i = 10;
printf( "data.i : %d\n", data.i);
data.f = 220.5;
printf( "data.f : %f\n", data.f);
strcpy( data.str, "C Programming");
printf( "data.str : %s\n", data.str);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
data.i : 10
data.f : 220.500000
data.str : C Programming
在这里,所有的成员都能完好输出,因为同一时间只用到一个成员。
typedef
C 语言提供了 typedef 关键字,您可以使用它来为类型取一个新的名字。下面的实例为单字节数字定义了一个术语 BYTE(按照惯例定义时会大写字母,但也可以使用小写字母):
typedef unsigned char BYTE;
在这个类型定义之后,标识符 BYTE 可作为类型 unsigned char 的缩写,例如:
BYTE b1, b2;
也可以使用 typedef 来为用户自定义的数据类型取一个新的名字。例如,您可以对结构体使用 typedef 来定义一个新的数据类型名字,然后使用这个新的数据类型来直接定义结构变量,如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27#include <stdio.h>
#include <string.h>
typedef struct Books
{
char title[50];
char author[50];
char subject[100];
int book_id;
} Book;
int main( )
{
Book book;
strcpy( book.title, "C 教程");
strcpy( book.author, "Runoob");
strcpy( book.subject, "编程语言");
book.book_id = 12345;
printf( "书标题 : %s\n", book.title);
printf( "书作者 : %s\n", book.author);
printf( "书类目 : %s\n", book.subject);
printf( "书 ID : %d\n", book.book_id);
return 0;
}
typedef vs #define
#define 是 C 指令,用于为各种数据类型定义别名,与 typedef 类似,但是它们有以下几点不同:
- typedef 仅限于为类型定义符号名称,#define 不仅可以为类型定义别名,也能为数值定义别名,比如您可以定义 1 为 ONE。
- typedef 是由编译器执行解释的,#define 语句是由预编译器进行处理的。
下面是 #define 的最简单的用法:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16#include <stdio.h>
#define TRUE 1
#define FALSE 0
int main( )
{
printf( "TRUE 的值: %d\n", TRUE);
printf( "FALSE 的值: %d\n", FALSE);
return 0;
}
上面的代码被编译和执行时,它会产生下列结果:
TRUE 的值: 1
FALSE 的值: 0
内联函数(inline)
在c/c++中,为了解决一些频繁调用的小函数大量消耗栈空间(栈内存)的问题,特别的引入了inline修饰符,表示为内联函数。
栈空间就是指放置程序的局部数据(也就是函数内数据)的内存空间。
在系统下,栈空间是有限的,假如频繁大量的使用就会造成因栈空间不足而导致程序出错的问题,如,函数的死循环递归调用的最终结果就是导致栈内存空间枯竭。
下面我们来看一个例子:1
2
3
4
5
6
7
8
9
10
11
12
13#include <stdio.h>
//函数定义为inline即:内联函数
inline char* dbtest(int a) {
return (i % 2 > 0) ? "奇" : "偶";
}
int main()
{
int i = 0;
for (i=1; i < 100; i++) {
printf("i:%d 奇偶性:%s /n", i, dbtest(i));
}
}
上面的例子就是标准的内联函数的用法,使用inline修饰带来的好处我们表面看不出来,其实,在内部的工作就是在每个for循环的内部任何调用dbtest(i)的地方都换成了(i%2>0)?”奇”:”偶”,这样就避免了频繁调用函数对栈内存重复开辟所带来的消耗。
使用限制
inline的使用是有所限制的,inline只适合函数体内代码简单的涵数使用,不能包含复杂的结构控制语句例如while、switch,并且不能内联函数本身不能是直接递归函数(即,自己内部还调用自己的函数)。
对编译器的建议
inline函数仅仅是一个对编译器的建议,所以最后能否真正内联要看编译器的意思,它如果认为函数不复杂,能在调用点展开,就会真正内联,并不是说声明了内联就会内联,声明内联只是一个建议而已。
类中的成员函数与inline
定义在类中的成员函数缺省都是内联的,如果在类定义时就在类内给出函数定义,那当然最好。如果在类中未给出成员函数定义,而又想内联该函数的话,那在类外要加上inline,否则就认为不是内联的。
例如:1
2
3
4class A
{
public:void Foo(int x, int y) { } // 自动地成为内联函数
}
将成员函数的定义体放在类声明之中虽然能带来书写上的方便,但不是一种良好的编程风格,上例应该改成:1
2
3
4
5
6
7
8
9// 头文件
class A
{
public:
void Foo(int x, int y);
}
// 定义文件
inline void A::Foo(int x, int y){}
inline 是一种“用于实现的关键字”
关键字inline 必须与函数定义体放在一起才能使函数成为内联,仅将inline 放在函数声明前面不起任何作用。
如下风格的函数Foo 不能成为内联函数:1
2
3inline void Foo(int x, int y); // inline 仅与函数声明放在一起
void Foo(int x, int y){}
而如下风格的函数Foo 则成为内联函数:1
2
3void Foo(int x, int y);
inline void Foo(int x, int y) {} // inline 与函数定义体放在一起
注意
1.建议:inline函数的定义放在头文件中
2.慎用inline:内联是以代码膨胀(复制)为代价,仅仅省去了函数调用的开销,从而提高函数的执行效率。如果执行函数体内代码的时间,相比于函数调用的开销较大,那么效率的收获会很少。另一方面,每一处内联函数的调用都要复制代码,将使程序的总代码量增大,消耗更多的内存空间。
3.最令人烦恼的还是当编译器拒绝内联的时候。如果内联函数不能增强性能,就避免使用它!
输入 & 输出
C 语言把所有的设备都当作文件。所以设备(比如显示器)被处理的方式与文件相同。以下三个文件会在程序执行时自动打开,以便访问键盘和屏幕。
标准文件 | 文件指针 | 设备 |
---|---|---|
标准输入 | stdin | 键盘 |
标准输出 | stdout | 屏幕 |
标准错误 | stderr | 屏幕 |
getchar() & putchar() 函数
int getchar(void) 函数从屏幕读取下一个可用的字符,并把它返回为一个整数。这个函数在同一个时间内只会读取一个单一的字符。您可以在循环内使用这个方法,以便从屏幕上读取多个字符。
int putchar(int c) 函数把字符输出到屏幕上,并返回相同的字符。这个函数在同一个时间内只会输出一个单一的字符。您可以在循环内使用这个方法,以便在屏幕上输出多个字符。
请看下面的实例:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include <stdio.h>
int main( )
{
int c;
printf( "Enter a value :");
c = getchar( );
printf( "\nYou entered: ");
putchar( c );
printf( "\n");
return 0;
}
当上面的代码被编译和执行时,它会等待您输入一些文本,当您输入一个文本并按下回车键时,程序会继续并只会读取一个单一的字符,显示如下:
$./a.out
Enter a value :runoob
You entered: r
gets() & puts() 函数
char *gets(char *s) 函数从 stdin 读取一行到 s 所指向的缓冲区,直到一个终止符或 EOF。
int puts(const char *s) 函数把字符串 s 和一个尾随的换行符写入到 stdout。
1 | #include <stdio.h> |
scanf() 和 printf() 函数
int scanf(const char *format, …) 函数从标准输入流 stdin 读取输入,并根据提供的 format 来浏览输入。
int printf(const char *format, …) 函数把输出写入到标准输出流 stdout ,并根据提供的格式产生输出。
format 可以是一个简单的常量字符串,但是您可以分别指定 %s、%d、%c、%f 等来输出或读取字符串、整数、字符或浮点数。还有许多其他可用的格式选项,可以根据需要使用。另外,在读取字符串时,只要遇到一个空格,scanf() 就会停止读取,所以 “this is test” 对 scanf() 来说是三个字符串。
实例:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include <stdio.h>
int main( ) {
char str[100];
int i;
printf( "Enter a value :");
scanf("%s %d", str, &i);
printf( "\nYou entered: %s %d ", str, i);
printf("\n");
return 0;
}
当上面的代码被编译和执行时,它会等待您输入一些文本,当您输入一个文本并按下回车键时,程序会继续并读取输入,显示如下:
$./a.out
Enter a value :runoob 123
You entered: runoob 123
文件读写
打开文件
您可以使用 fopen( ) 函数来创建一个新的文件或者打开一个已有的文件,这个调用会初始化类型 FILE 的一个对象,类型 FILE 包含了所有用来控制流的必要的信息。原型为:
FILE *fopen( const char * filename, const char * mode );
在这里,filename 是字符串,用来命名文件,访问模式 mode 的值可以是下列值中的一个:
模式 | 描述 |
---|---|
r | 打开一个已有的文本文件,允许读取文件。 |
w | 打开一个文本文件,允许写入文件。如果文件不存在,则会创建一个新文件。在这里,您的程序会从文件的开头写入内容。如果文件存在,则该会被截断为零长度,重新写入。 |
a | 打开一个文本文件,以追加模式写入文件。如果文件不存在,则会创建一个新文件。在这里,您的程序会在已有的文件内容中追加内容。 |
r+ | 打开一个文本文件,允许读写文件。 |
w+ | 打开一个文本文件,允许读写文件。如果文件已存在,则文件会被截断为零长度,如果文件不存在,则会创建一个新文件。 |
a+ | 打开一个文本文件,允许读写文件。如果文件不存在,则会创建一个新文件。读取会从文件的开头开始,写入则只能是追加模式。 |
如果处理的是二进制文件,则需使用下面的访问模式来取代上面的访问模式:
“rb”, “wb”, “ab”, “rb+”, “r+b”, “wb+”, “w+b”, “ab+”, “a+b”
关闭文件
为了关闭文件,请使用 fclose( ) 函数。函数的原型如下:
int fclose( FILE *fp );
如果成功关闭文件,fclose( ) 函数返回零,如果关闭文件时发生错误,函数返回 EOF。这个函数实际上,会清空缓冲区中的数据,关闭文件,并释放用于该文件的所有内存。EOF 是一个定义在头文件 stdio.h 中的常量。
写入文件
函数 fputc() 把参数 c 的字符值写入到 fp 所指向的输出流中。如果写入成功,它会返回写入的字符,如果发生错误,则会返回 EOF。下面是把字符写入到流中的最简单的函数:
int fputc( int c, FILE *fp );
函数 fputs() 把字符串 s 写入到 fp 所指向的输出流中。如果写入成功,它会返回一个非负值,如果发生错误,则会返回 EOF。您可以使用下面的函数来把一个以 null 结尾的字符串写入到流中:
int fputs( const char *s, FILE *fp );
您也可以使用 int fprintf(FILE *fp,const char *format, …) 函数来写把一个字符串写入到文件中。尝试下面的实例:
注意:请确保您有可用的 tmp 目录,如果不存在该目录,则需要在您的计算机上先创建该目录。/tmp 一般是 Linux 系统上的临时目录,如果你在 Windows 系统上运行,则需要修改为本地环境中已存在的目录,例如: C:\tmp、D:\tmp等。
实例1
2
3
4
5
6
7
8
9
10#include <stdio.h>
int main()
{
FILE *fp = NULL;
fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for fprintf...\n");
fputs("This is testing for fputs...\n", fp);
fclose(fp);
}
读取文件
fgetc() 函数从 fp 所指向的输入文件中读取一个字符。返回值是读取的字符,如果发生错误则返回 EOF。下面是从文件读取单个字符的最简单的函数:
int fgetc( FILE * fp );
函数 fgets() 从 fp 所指向的输入流中读取 n - 1 个字符。它会把读取的字符串复制到缓冲区 buf,并在最后追加一个 null 字符来终止字符串。如果这个函数在读取最后一个字符之前就遇到一个换行符 ‘\n’ 或文件的末尾 EOF,则只会返回读取到的字符,包括换行符。下面的函数允许您从流中读取一个字符串:
char *fgets( char *buf, int n, FILE *fp );
您也可以使用 int fscanf(FILE *fp, const char *format, …) 函数来从文件中读取字符串,但是在遇到第一个空格和换行符时,它会停止读取。
1 | #include <stdio.h> |
首先,fscanf() 方法只读取了 This,因为它在后边遇到了一个空格。其次,调用 fgets() 读取剩余的部分,直到行尾。最后,调用 fgets() 完整地读取第二行。
二进制 I/O 函数
下面两个函数用于二进制输入和输出:1
2
3
4
5size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);
这两个函数都是用于存储块的读写 - 通常是数组或结构体。
C 预处理器
C 预处理器不是编译器的组成部分,但是它是编译过程中一个单独的步骤。简言之,C 预处理器只不过是一个文本替换工具而已,它们会指示编译器在实际编译之前完成所需的预处理。我们将把 C 预处理器(C Preprocessor)简写为 CPP。
所有的预处理器命令都是以井号(#)开头。它必须是第一个非空字符,为了增强可读性,预处理器指令应从第一列开始。下面列出了所有重要的预处理器指令:
指令 | 描述 |
---|---|
#define | 定义宏 |
#include | 包含一个源代码文件 |
#undef | 取消已定义的宏 |
#ifdef | 如果宏已经定义,则返回真 |
#ifndef | 如果宏没有定义,则返回真 |
#if | 如果给定条件为真,则编译下面代码 |
#else | #if 的替代方案 |
#elif | 如果前面的 #if 给定条件不为真,当前条件为真,则编译下面代码 |
#endif | 结束一个 #if……#else 条件编译块 |
#error | 当遇到标准错误时,输出错误消息 |
#pragma | 使用标准化方法,向编译器发布特殊的命令到编译器中 |
预定义宏
ANSI C 定义了许多宏。在编程中您可以使用这些宏,但是不能直接修改这些预定义的宏。
宏 | 描述 |
---|---|
__DATE__ | 当前日期,一个以 “MMM DD YYYY” 格式表示的字符常量。 |
__TIME__ | 当前时间,一个以 “HH:MM:SS” 格式表示的字符常量。 |
__FILE__ | 这会包含当前文件名,一个字符串常量。 |
__LINE__ | 这会包含当前行号,一个十进制常量。 |
__STDC__ | 当编译器以 ANSI 标准编译时,则定义为 1。 |
预处理器运算符
C 预处理器提供了下列的运算符来帮助您创建宏:
宏延续运算符(\)
一个宏通常写在一个单行上。但是如果宏太长,一个单行容纳不下,则使用宏延续运算符(\)。例如:1
2#define message_for(a, b) \
printf(#a " and " #b ": We love you!\n")
字符串常量化运算符(#)
在宏定义中,当需要把一个宏的参数转换为字符串常量时,则使用字符串常量化运算符(#)。在宏中使用的该运算符有一个特定的参数或参数列表。例如:1
2
3
4
5
6
7
8
9
10
11
12
13#include <stdio.h>
#define message_for(a, b) \
printf(#a " and " #b ": We love you!\n")
int main(void)
{
message_for(Carole, Debra);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Carole and Debra: We love you!
标记粘贴运算符(##)
宏定义内的标记粘贴运算符(##)会合并两个参数。它允许在宏定义中两个独立的标记被合并为一个标记。例如:1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <stdio.h>
#define tokenpaster(n) printf ("token" #n " = %d", token##n)
int main(void)
{
int token34 = 40;
tokenpaster(34);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
token34 = 40
这是怎么发生的,因为这个实例会从编译器产生下列的实际输出:
printf (“token34 = %d”, token34);
这个实例演示了 token##n 会连接到 token34 中,在这里,我们使用了字符串常量化运算符(#)和标记粘贴运算符(##)。
defined() 运算符
预处理器 defined 运算符是用在常量表达式中的,用来确定一个标识符是否已经使用 #define 定义过。如果指定的标识符已定义,则值为真(非零)。如果指定的标识符未定义,则值为假(零)。下面的实例演示了 defined() 运算符的用法:1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <stdio.h>
#if !defined (MESSAGE)
#define MESSAGE "You wish!"
#endif
int main(void)
{
printf("Here is the message: %s\n", MESSAGE);
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Here is the message: You wish!
参数化的宏
CPP 一个强大的功能是可以使用参数化的宏来模拟函数。例如,计算一个数的平方,我们可以使用宏重写上面的代码,如下:
#define square(x) ((x) * (x))
在使用带有参数的宏之前,必须使用 #define 指令定义。参数列表是括在圆括号内,且必须紧跟在宏名称的后边。宏名称和左圆括号之间不允许有空格。例如:1
2
3
4
5
6
7
8
9
10
11
12#include <stdio.h>
#define MAX(x,y) ((x) > (y) ? (x) : (y))
int main(void)
{
printf("Max between 20 and 10 is %d\n", MAX(10, 20));
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Max between 20 and 10 is 20
头文件
头文件是扩展名为 .h 的文件,包含了 C 函数声明和宏定义,被多个源文件中引用共享。有两种类型的头文件:编译器自带的头文件和程序员编写的头文件(如下)。在编译源代码时,您可以通过 -I 选项把目录前置在该列表前。
#include <file>
#include “file”
A simple practice in C 或 C++ 程序中,建议把所有的常量、宏、系统全局变量和函数原型写在头文件中,在需要的时候随时引用这些头文件。
只引用一次头文件
如果一个头文件被引用两次,编译器会处理两次头文件的内容,这将产生错误。为了防止这种情况,标准的做法是把文件的整个内容放在条件编译语句中,如下:1
2
3
4
5
6#ifndef HEADER_FILE
#define HEADER_FILE
the entire header file file
#endif
这种结构就是通常所说的包装器 #ifndef。当再次引用头文件时,条件为假,因为 HEADER_FILE 已定义。此时,预处理器会跳过文件的整个内容,编译器会忽略它。
有条件引用
有时需要从多个不同的头文件中选择一个引用到程序中。例如,需要指定在不同的操作系统上使用的配置参数。您可以通过一系列条件来实现这点,如下:1
2
3
4
5
6
7#if SYSTEM_1
# include "system_1.h"
#elif SYSTEM_2
# include "system_2.h"
#elif SYSTEM_3
...
#endif
但是如果头文件比较多的时候,这么做是很不妥当的,预处理器使用宏来定义头文件的名称。这就是所谓的有条件引用。它不是用头文件的名称作为 #include 的直接参数,您只需要使用宏名称代替即可:1
2
3#define SYSTEM_H "system_1.h"
...
#include SYSTEM_H
SYSTEM_H 会扩展,预处理器会查找 system_1.h,就像 #include 最初编写的那样。SYSTEM_H 可通过 -D 选项被您的 Makefile 定义。
强制类型转换
强制类型转换是把变量从一种类型转换为另一种数据类型。您可以使用强制类型转换运算符来把值显式地从一种类型转换为另一种类型,如下所示:
(type_name) expression
在编程时,有需要类型转换的时候都用上强制类型转换运算符,是一种良好的编程习惯。
整数提升
整数提升是指把小于 int 或 unsigned int 的整数类型转换为 int 或 unsigned int 的过程。请看下面的实例,在 int 中添加一个字符:1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <stdio.h>
int main()
{
int i = 17;
char c = 'c'; /* ascii 值是 99 */
int sum;
sum = i + c;
printf("Value of sum : %d\n", sum );
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of sum : 116
在这里,sum 的值为 116,因为编译器进行了整数提升,在执行实际加法运算时,把 ‘c’ 的值转换为对应的 ascii 值。
常用的算术转换
常用的算术转换是隐式地把值强制转换为相同的类型。编译器首先执行整数提升,如果操作数类型不同,则它们会被转换为下列层次中出现的最高层次的类型:
让我们看看下面的实例来理解这个概念:1
2
3
4
5
6
7
8
9
10
11
12
13
14#include <stdio.h>
int main()
{
int i = 17;
char c = 'c'; /* ascii 值是 99 */
float sum;
sum = i + c;
printf("Value of sum : %f\n", sum );
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of sum : 116.000000
在这里,c 首先被转换为整数,但是由于最后的值是 float 型的,所以会应用常用的算术转换,编译器会把 i 和 c 转换为浮点型,并把它们相加得到一个浮点数。
错误处理
C 语言不提供对错误处理的直接支持,但是作为一种系统编程语言,它以返回值的形式允许您访问底层数据。在发生错误时,大多数的 C 或 UNIX 函数调用返回 1 或 NULL,同时会设置一个错误代码 errno,该错误代码是全局变量,表示在函数调用期间发生了错误。您可以在 errno.h 头文件中找到各种各样的错误代码。
所以,C 程序员可以通过检查返回值,然后根据返回值决定采取哪种适当的动作。开发人员应该在程序初始化时,把 errno 设置为 0,这是一种良好的编程习惯。0 值表示程序中没有错误。
errno、perror() 和 strerror()
C 语言提供了 perror() 和 strerror() 函数来显示与 errno 相关的文本消息。
- perror() 函数显示您传给它的字符串,后跟一个冒号、一个空格和当前 errno 值的文本表示形式。
- strerror() 函数,返回一个指针,指针指向当前 errno 值的文本表示形式。
让我们来模拟一种错误情况,尝试打开一个不存在的文件。您可以使用多种方式来输出错误消息,在这里我们使用函数来演示用法。另外有一点需要注意,您应该使用 stderr 文件流来输出所有的错误。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29#include <stdio.h>
#include <errno.h>
#include <string.h>
extern int errno ;
int main ()
{
FILE * pf;
int errnum;
pf = fopen ("unexist.txt", "rb");
if (pf == NULL)
{
errnum = errno;
fprintf(stderr, "错误号: %d\n", errno);
perror("通过 perror 输出错误");
fprintf(stderr, "打开文件错误: %s\n", strerror( errnum ));
}
else
{
fclose (pf);
}
return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
错误号: 2
通过 perror 输出错误: No such file or directory
打开文件错误: No such file or directory
程序退出状态
通常情况下,程序成功执行完一个操作正常退出的时候会带有值 EXIT_SUCCESS。在这里,EXIT_SUCCESS 是宏,它被定义为 0。
如果程序中存在一种错误情况,当您退出程序时,会带有状态值 EXIT_FAILURE,被定义为 -1。1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22#include <stdio.h>
#include <stdlib.h>
main()
{
int dividend = 20;
int divisor = 5;
int quotient;
// 在进行除法运算时,如果不检查除数是否为零,则会导致一个运行时错误。
if( divisor == 0){
fprintf(stderr, "除数为 0 退出运行...\n");
exit(EXIT_FAILURE);
}
quotient = dividend / divisor;
fprintf(stderr, "quotient 变量的值为: %d\n", quotient );
exit(EXIT_SUCCESS);
}
当上面的代码被编译和执行时,它会产生下列结果:
quotient 变量的值为 : 4
可变参数
有时,您可能会碰到这样的情况,您希望函数带有可变数量的参数,而不是预定义数量的参数。C 语言为这种情况提供了一个解决方案,它允许您定义一个函数,能根据具体的需求接受可变数量的参数。定义如下:1
2
3
4
5
6
7
8
9
10
11
12int func(int, ... )
{
.
.
.
}
int main()
{
func(2, 2, 3);
func(3, 2, 3, 4);
}
请注意,函数 func() 最后一个参数写成省略号,即三个点号(…),省略号之前的那个参数是 int,代表了要传递的可变参数的总数。为了使用这个功能,您需要使用 stdarg.h 头文件,该文件提供了实现可变参数功能的函数和宏。具体步骤如下:
- 定义一个函数,最后一个参数为省略号,省略号前面可以设置自定义参数。
- 在函数定义中创建一个 va_list 类型变量,该类型是在 stdarg.h 头文件中定义的。
- 使用 int 参数和 va_start 宏来初始化 va_list 变量为一个参数列表。宏 va_start 是在 stdarg.h 头文件中定义的。
- 使用 va_arg 宏和 va_list 变量来访问参数列表中的每个项。
- 使用宏 va_end 来清理赋予 va_list 变量的内存。
现在让我们按照上面的步骤,来编写一个带有可变数量参数的函数,并返回它们的平均值:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33#include <stdio.h>
#include <stdarg.h>
double average(int num,...)
{
va_list valist;
double sum = 0.0;
int i;
/* 为 num 个参数初始化 valist */
va_start(valist, num);
/* 访问所有赋给 valist 的参数 */
for (i = 0; i < num; i++)
{
sum += va_arg(valist, int);
}
/* 清理为 valist 保留的内存 */
va_end(valist);
return sum/num;
}
int main()
{
printf("Average of 2, 3, 4, 5 = %f\n", average(4, 2,3,4,5));
printf("Average of 5, 10, 15 = %f\n", average(3, 5,10,15));
}
当上面的代码被编译和执行时,它会产生下列结果:
Average of 2, 3, 4, 5 = 3.500000
Average of 5, 10, 15 = 10.000000
内存管理
语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。
序号 | 函数和描述 |
---|---|
1 | void *calloc(int num, int size) 在内存中动态地分配 num 个长度为 size 的连续空间,并将每一个字节都初始化为 0。所以它的结果是分配了 num*size 个字节长度的内存空间,并且每个字节的值都是0。 |
2 | void free(void *address) 该函数释放 address 所指向的内存块,释放的是动态分配的内存空间。 |
3 | void *malloc(int num) 在堆区分配一块指定大小的内存空间,用来存放数据。这块内存空间在函数执行完成后不会被初始化,它们的值是未知的。 |
4 | void *realloc(void *address, int newsize) 该函数重新分配内存,把内存扩展到 newsize。 |
注意:void * 类型表示未确定类型的指针。C、C++ 规定 void * 类型可以通过类型转换强制转换为任何其它类型的指针。
动态分配内存
如果您预先不知道需要存储的文本长度,例如您向存储有关一个主题的详细描述。在这里,我们需要定义一个指针,该指针指向未定义所需内存大小的字符,后续再根据需求来分配内存,如下所示:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
char name[100];
char *description;
strcpy(name, "Zara Ali");
/* 动态分配内存 */
description = (char *)malloc( 200 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcpy( description, "Zara ali a DPS student in class 10th");
}
printf("Name = %s\n", name );
printf("Description: %s\n", description );
}
当上面的代码被编译和执行时,它会产生下列结果:
Name = Zara Ali
Description: Zara ali a DPS student in class 10th
上面的程序也可以使用 calloc() 来编写,只需要把 malloc 替换为 calloc 即可,如下所示:
calloc(200, sizeof(char));
当动态分配内存时,您有完全控制权,可以传递任何大小的值。而那些预先定义了大小的数组,一旦定义则无法改变大小。
重新调整内存的大小和释放内存
当程序退出时,操作系统会自动释放所有分配给程序的内存,但是,建议您在不需要内存时,都应该调用函数 free() 来释放内存。
或者,您可以通过调用函数 realloc() 来增加或减少已分配的内存块的大小。让我们使用 realloc() 和 free() 函数,再次查看上面的实例:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
char name[100];
char *description;
strcpy(name, "Zara Ali");
/* 动态分配内存 */
description = (char *)malloc( 30 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcpy( description, "Zara ali a DPS student.");
}
/* 假设您想要存储更大的描述信息 */
description = (char *) realloc( description, 100 * sizeof(char) );
if( description == NULL )
{
fprintf(stderr, "Error - unable to allocate required memory\n");
}
else
{
strcat( description, "She is in class 10th");
}
printf("Name = %s\n", name );
printf("Description: %s\n", description );
/* 使用 free() 函数释放内存 */
free(description);
}
当上面的代码被编译和执行时,它会产生下列结果:
Name = Zara Ali
Description: Zara ali a DPS student.She is in class 10th
您可以尝试一下不重新分配额外的内存,strcat() 函数会生成一个错误,因为存储 description 时可用的内存不足。
命令行参数
命令行参数是使用 main() 函数参数来处理的,其中,argc 是指传入参数的个数,argv[] 是一个指针数组,指向传递给程序的每个参数。下面是一个简单的实例,检查命令行是否有提供参数,并根据参数执行相应的动作:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29#include <stdio.h>
int main( int argc, char *argv[] )
{
if( argc == 2 )
{
printf("The argument supplied is %s\n", argv[1]);
}
else if( argc > 2 )
{
printf("Too many arguments supplied.\n");
}
else
{
printf("One argument expected.\n");
}
}
使用一个参数,编译并执行上面的代码,它会产生下列结果:
$./a.out testing
The argument supplied is testing
使用两个参数,编译并执行上面的代码,它会产生下列结果:
$./a.out testing1 testing2
Too many arguments supplied.
不传任何参数,编译并执行上面的代码,它会产生下列结果:
$./a.out
One argument expected
应当指出的是,argv[0] 存储程序的名称,argv[1] 是一个指向第一个命令行参数的指针,*argv[n] 是最后一个参数。如果没有提供任何参数,argc 将为 1,否则,如果传递了一个参数,argc 将被设置为 2。
多个命令行参数之间用空格分隔,但是如果参数本身带有空格,那么传递参数的时候应把参数放置在双引号 “” 或单引号 ‘’ 内部。
库函数
printf()
C 库函数 int printf(const char *format, …) 发送格式化输出到标准输出 stdout。
规定符:
- %d 十进制有符号整数
- %u 十进制无符号整数
- %f 浮点数
- %s 字符串
- %c 单个字符
- %p 指针的值
- %e 指数形式的浮点数
- %x, %X 无符号以十六进制表示的整数
- %o 无符号以八进制表示的整数
- %g 把输出的值按照 %e 或者 %f 类型中输出长度较小的方式输出
- %p 输出地址符
- %lu 32位无符号整数
- %llu 64位无符号整数
C11
C11(也被称为C1X)指ISO标准ISO/IEC 9899:2011,是当前最新的C语言标准。在它之前的C语言标准为C99。
新特性:
对齐处理(Alignment)的标准化(包括_Alignas标志符,alignof运算符,aligned_alloc函数以及<stdalign.h>头文件)。
_Noreturn 函数标记,类似于 gcc 的 attribute((noreturn))。
_Generic 关键字。
多线程(Multithreading)支持,包括:
_Thread_local存储类型标识符,<threads.h>头文件,里面包含了线程的创建和管理函数。
_Atomic类型修饰符和<stdatomic.h>头文件。增强的Unicode的支持。基于C Unicode技术报告ISO/IEC TR 19769:2004,增强了对Unicode的支持。包括为UTF-16/UTF-32编码增加了char16_t和char32_t数据类型,提供了包含unicode字符串转换函数的头文件<uchar.h>。
删除了 gets() 函数,使用一个新的更安全的函数gets_s()替代。
增加了边界检查函数接口,定义了新的安全的函数,例如 fopen_s(),strcat_s() 等等。
增加了更多浮点处理宏(宏)。
匿名结构体/联合体支持。这个在gcc早已存在,C11将其引入标准。
静态断言(Static assertions),_Static_assert(),在解释 #if 和 #error 之后被处理。
新的 fopen() 模式,(“…x”)。类似 POSIX 中的 O_CREAT|O_EXCL,在文件锁中比较常用。
新增 quick_exit() 函数作为第三种终止程序的方式。当 exit()失败时可以做最少的清理工作。
重入函数
在实时系统的设计中,经常会出现多个任务调用同一个函数的情况。所谓可重入是指一个可以被多个任务调用的过程,任务在调用时不必担心数据是否会 出错。不可重入函数在实时系统设计中被视为不安全函数。
可重入函数可以被一个以上的任务调用,而不必担心数据被破坏。可重入函数任何时候都可以被中断,一段时间以后又可以运行,而相应的数据不会丢失。可重入函数或者只使用局部变量,即保存在CPU寄存器中或堆栈中;或者使用全局变量,则要对全局变量予以保护。而不可重入的函数由于使用了一些系统资源,比如全局变量区,中断向量表等等,所以他如果被中断的话,可能出现问题,所以这类函数是 不能运行在多任务环境下的。
满足下列条件的函数多数是不可重入的:
(1)函数体内使用了静态的数据结构;
(2)函数体内调用了malloc()或者free()函数;
(3)函数体内调用了标准I/O函数。
如何写出可重入的函数?
在函数体内不访问那些全局变量,不使用静态局部变量,坚持只使用缺省态(auto)局部变量,写出的函数就将是可重入的。如果必须访问全局变量,记住利用互斥信号量来保护全局变量。或者调用该函数前关中断,调用后再开中断。
把一个不可重入函数变成可重入的唯一方法是用可重入规则来重写他。只要遵守以下几条很容易理解的规则:
第一,不要使用全局变量。因为别的代码很可能覆盖这些变量值。
第二,在和硬件发生交互的时候,切记执行类似disinterrupt()之类的操作,就是关闭硬件中断。完成交互记得打开中断,在有些系列上,这叫做“进入/退出核心”或者用OS_ENTER_KERNAL/OS_EXIT_KERNAL来描述。
第三,不能调用任何不可重入的函数。
第四,谨慎使用堆栈。最好先在使用前先OS_ENTER_KERNAL。
还有一些规则,都是很好理解的,总之,时刻记住一句话:保证中断是安全的!
通俗的来讲吧:由于中断是可能随时发生的,断点位置也是无法预期的。所以必须保证每个函数都具有不被中断发生,压栈,转向ISR,弹栈后继续执行影响的稳定性。也就是说具有不会被中断影响的能力。既然有这个要求,你提供和编写的每个函数就不能拿公共的资源或者是变量来使用,因为该函数使用的同时,ISR(中断服务程序)也可那会去修改或者是获取这个资源,从而有可能使中断返回之后,这部分公用的资源已经面目全非。
案例:
相信很多人都看过下面这个面试题
中断是嵌入式系统中重要的组成部分,这导致了很多编译开发商提供一种扩展—让标准C支持中断。具代表事实是,产生了一个新的关键字 interrupt。下面的代码就使用了interrupt关键字去定义了一个中断服务子程序(ISR),请评论一下这段代码的。1
2
3
4
5
6__interrupt double compute_area (double radius)
{
double area = PI * radius * radius;
printf("\nArea = %f", area);
return area;
}
这个函数有太多的错误了,以至让人不知从何说起了:
1)ISR 不能返回一个值。如果你不懂这个,那么你不会被雇用的。
2) ISR 不能传递参数。如果你没有看到这一点,你被雇用的机会等同第一项。
3) 在许多的处理器/编译器中,浮点一般都是不可重入的。有些处理器/编译器需要让额处的寄存器入栈,有些处理器/编译器就是不允许在ISR中做浮点运算。此外,ISR应该是短而有效率的,在ISR中做浮点运算是不明智的。
4) 与第三点一脉相承,printf()经常有重入和性能上的问题。如果你丢掉了第三和第四点,我不会太为难你的。不用说,如果你能得到后两点,那么你的被雇用前景越来越光明了。
参考资料
https://www.runoob.com/cprogramming/c-tutorial.html
C语言之可重入函数 && 不可重入函数